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A B S T R A C T

Hyperspectral imaging is a powerful, non-destructive tool that has shown promise in estimating plant nutrition 
but remains underexplored for Hydrangea macrophylla, an important ornamental shrub. In this study, we 
developed regression and discrimination models for assessing nitrogen (N) and phosphorus (P) statuses in hy
drangea at the seeding stage using spectral data combined with machine learning techniques. Spectral reflec
tance data, captured across various nutritional states following different N and P fertilisation treatments, were 
paired with laboratory-measured leaf nitrogen content (LNC) and leaf phosphorus content (LPC) data. Spectral 
reflectance data captured under various N and P treatments were processed with first derivative (FD) and 
continuous wavelet transform (CWT) to improve the data quality. The results of the correlation analysis revealed 
that the CWT was more strongly correlated with N (r = –0.90) and P (r = –0.87) than with FD. The machine 
learning models, which were provided with full-band and wavelet features, showed that the partial least squares 
regression (PLSR) model, which was integrated with the CWT, could accurately predict LNC (R2 

= 0.947, RRMSE 
= 9.6 %) and LPC (R2 = 0.827, RRMSE = 10.6 %). Additionally, the PNN model classified nutrient statuses with 
over 95 % accuracy. Notably, N predictions outperformed those for P, probably because of weaker spectral 
correlations with P. These findings highlight the potential of hyperspectral imaging and machine learning for 
precise nutrient management in hydrangea cultivation and contribute to sustainable agricultural practices 
globally.

1. Introduction

Hydrangea macrophylla, commonly known as bigleaf or French hy
drangea, is cultivated worldwide for ornamental and medicinal purposes 
(Li et al., 2018). It is grown as deciduous woody shrubs for landscaping 
or used as potted plants and cut flowers (Anderson et al., 2009). Ac
cording to the 2019 Census of Horticultural Specialties, the sale value of 
hydrangeas as nursery stock in the United States was $106,862,000, 
ranking hydrangeas as the third most productive cultivated deciduous 
shrub (USDA, 2019). Although it is economically important, hydrangea 
cultivation faces challenges related to high nutrient demands, particu
larly for nitrogen (N) and phosphorus (P), which are required for many 
key physiological and biochemical processes (Guo et al., 2018). Nutrient 
deficiencies or excesses can limit productivity and lead to environmental 
issues such as pollution from fertiliser runoff (Shreckhise et al., 2019). 
Therefore, the rational application of N and P fertilisers is highly 

important for the production of hydrangea nurseries and for reducing 
global environmental pollution.

Recent advancements in agricultural technologies have revealed 
ways to address environmental and economic challenges while 
improving human life and promoting sustainable development (Amiri 
et al., 2025; Hanafi et al., 2024; Imani et al., 2025; Zinatloo-Ajabshir 
et al., 2025; Zonarsaghar et al., 2022). These innovative techniques 
highlight the importance of integrating sustainable practices into hor
ticulture. Traditional nutrition diagnosis methods (such as the Kjeldahl 
digestion method) are time-consuming, expensive, and labour-intensive. 
Hyperspectral imaging is a valuable tool for non-destructive nutrient 
diagnosis. It is accurate, sustainable, and can process high-dimensional 
data (Ball et al., 2022). This technology has been applied to estimate leaf 
nitrogen content (LNC) and leaf phosphorus content (LPC) in various 
crop species, including rice, wheat, and cotton (Li et al., 2021; Sun et al., 
2019; Wang et al., 2021). However, its application to hydrangea, a 
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popular and economically important ornamental plant, remains 
underexplored.

Recently, machine learning, in conjunction with hyperspectral im
aging, has offered new possibilities for improving the accuracy and ef
ficiency of nutrient diagnosis. Models such as partial least squares 
regression (PLSR), random forest (RF), and convolutional neural net
works (CNNs) have shown promise in estimating nutrient content from 
spectral data (Guo et al., 2018; Pourdarbani et al., 2021; Wang et al., 
2023). The predictive accuracy of the N models at the leaf scale shows 
considerable variation, with R2 values ranging from 0.37 to 0.99. In 
contrast, P models present R2 values ranging from 0.32 to 0.95, indi
cating moderate-to-high precision (Watt et al., 2020). This variance 
highlights the disparate efficacy of different models in estimating N and 
P levels, highlighting the importance of choosing appropriate input 
variables for machine learning algorithms. A promising approach to 
further refine modelling accuracy and reduce dimensionality involves 
integrating wavelet analysis with machine learning.

The continuous wavelet transformation (CWT), a signal processing 
technique, excels in localising information in both the frequency and 
time domains and deconstructing signals across various scales and po
sitions (Cheng et al., 2011). Its application has improved model preci
sion for assessing LNC and LPC, outperforming traditional spectral 
transformations such as the first derivative (FD) (Gu et al., 2022). Some 
studies have revealed the efficacy of combining CWT with PLSR for 
extracting plant water status, phosphorus (P), or biomass from hyper
spectral reflectance data (Gu et al., 2022; Zhang et al., 2023; Zhuang 
et al., 2023). Additionally, timely guidance and early detection of the 
nutrition status of hydrangea are highly important to farmers. The 
probabilistic neural network (PNN) is a robust method for rapidly 
detecting nutrient status and is crucial for timely agricultural manage
ment (Azlah et al., 2019). It has been applied in fields such as plant 
nutrition diagnosis (Lou et al., 2022), foliar biotic damage discrimina
tion (Liu et al., 2018), and leaf identification (Abdulazeez et al., 2021).

Despite the advances in hyperspectral imaging and machine learning 
for plant nutrition, challenges remain in generalising these models 
owing to variations in spectral responses under different nutritional 
states, particularly during crucial growth phases. This study aimed to (1) 
elucidate the spectral responses of hydrangea leaves to different N and P 
fertilisation via hyperspectral imaging technology; (2) assess the effi
cacy of machine learning models, comparing different spectral trans
formations (FD and CWT), to identify an optimal model for estimating 
the N and P contents of hydrangea leaves; (3) validate the precision of 
discriminants for different N and P statuses using the PNN model. These 
findings can contribute to improving precise nutrient management 
practices in hydrangea cultivation and promote global efforts in sus
tainable agricultural development.

2. Materials and methods

2.1. Experimental design and crop growing

A pot experiment was conducted at Chenshan Botanical Garden in 
Songjiang District, Shanghai (31.08 N, 121.77 E). Root cuttings of 
H. macrophylla ‘Hanatemari’ (obtained from Hangzhou Landscaping Inc. 
in August 2021) were planted in pots (13 cm external diameter, 9 cm 
bottom diameter, and 11 cm height) filled with a substrate mixture of 
peat moss, perlite, and coconut husk (3:1:1 volume ratio). The chemical 
characteristics of the substrate were as follows: pH, 6.45; EC, 1.27 
mS⋅cm-1; total N, 7.96 mg⋅g–1; total P, 1.09; total K, 3.33 mg⋅g–1; and 
organic matter, 865.18 g⋅kg–1. No basal fertiliser was added to the 
substrate before the treatment was applied. The plants were cultivated 
for eight weeks in a climatic room with no sunlight under a 16-h 
photoperiod with a PPFD of 101.93 μmol m–2s–1 supplied by LED 
lights. The temperature of the chamber was maintained at 25 ±0.5◦C, 
and the relative humidity (RH) was 60 %. The plants were watered with 
unfertilised tap water during this period.

The plants had 4–5 leaf pairs before the treatments began. From 
November 2021 to January 2022, the plants were subjected to four N 
treatments (0, 0.4, 0.8, and 1.2 g per pot, corresponding to N0, N1, N2, 
and N3, respectively) and four P treatments (0, 0.15, 0.3, and 0.45 g per 
pot, corresponding to P0, P1, P2, and P3, respectively). The plants 
without N and P fertilisers were treated as the control (CK). A fixed K 
dosage (1.48 g K2SO4 per pot) was applied across all treatments. Based 
on our preliminary fertiliser experimental results, N2, P2, and K were 
determined using the appropriate application rates (Wang et al., 2022). 
A completely randomised block design with 30 replications was used to 
allocate each treatment (Table 1).

Urea (containing 46.6 % N), calcium superphosphate (containing 
14.5 % P2O5), and K2SO4 (containing 54.1 % K2O) were selected as the 
N, P, and K fertilisers, respectively. Seven parts of urea and K2SO4 were 
applied every seven days. Calcium superphosphate was applied in three 
portions every fifteen days. Images and plant tissue samples were 
collected at four development stages, namely, G0, G1, G2, and G3, 
which corresponded to 0, 20, 40, and 60 days following the initial fer
tilisation, respectively. Specifically, G0, G1, G2, and G3 were on 
November 23, 2021, December 13, 2021, January 2, 2022, and January 
22, 2022.

2.2. Image acquisition and processing

A GaiaSky-mini2-VN hyperspectral imaging system (Dualix Spectral 
Imaging Technology Co., Ltd., Sichuan, China) was used to acquire 
hyperspectral images of the leaves. The system offered a spectral range 
of 400 to 1000 nm and a spectral resolution of 3 ±0.5 nm. The hyper
spectral imager, equipped with a 16 mm lens, was mounted at a height of 
about 30 cm within a field of view of 36.25◦. The images were captured 
at a spatial resolution of 0.2 mm, with dimensions of 960 × 1040 pixels. 
The push-broom method was used, which involved the camera moving 
across the scene to construct a two-dimensional image. Full-spectrum 
halogen lamps served as the light source for the system. To decrease 
the effect of ambient light, the entire setup was enclosed in a black box 
(Fig. 1).

The leaf sample was placed in the centre of the black background 
plate to ensure that it was spread as flat as possible without significant 
curling or folding. Hyperspectral images were captured using the data 
acquisition software SpecView. Reflectance values from the raw data 
were obtained via white and dark calibrations, following the approach 
described in another study (Baranowski et al., 2015). The calibrated 
hyperspectral images were imported into R-4.2.1, where the edges of the 
leaf were identified using the raster package, and the average spectral 
curve for all pixels within the leaf in each image was calculated. The 
second pair of fully expanded leaves, not shaded by other leaves, was 
picked to acquire hyperspectral images from the G1 to G3 growth pe
riods, with 10–20 replicates for each treatment. In total, 405 leaf sam
ples were collected.

Table 1 
Fertiliser treatments of H. macrophylla ‘Hanatemari’.

NO. Treatment Each nutrient 
consumption 
(g⋅pot–1)

Fertilising amount (g⋅pot–1)

N P2O5 K2O Urea Calcium 
superphosphate

K2SO4

T1 N0 0 0.3 0.8 0 2.07 1.48
T2 N1 0.4 0.3 0.8 0.86 2.07 1.48
T3 N2&P2 0.8 0.3 0.8 1.72 2.07 1.48
T4 N3 1.2 0.3 0.8 2.58 2.07 1.48
T5 P0 0.8 0 0.8 1.72 0 1.48
T6 P1 0.8 0.15 0.8 1.72 1.03 1.48
T7 P3 0.8 0.45 0.8 1.72 3.10 1.48
T8 CK 0 0 0.8 0 0 1.48
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2.3. Analytical reference measurements

After the spectral data were collected, the leaf samples were har
vested to measure LNC and LPC. The samples were first oven-dried at 
105◦C for 30 min and then dried at 70◦C until they reached a constant 
dry mass (Wang et al., 2022). The leaf samples were finely ground and 
analysed for their N and P contents using the Kjeldahl method (Li et al., 
2021) and the molybdate blue colorimetric method (Zhang et al., 2023), 
respectively.

To assess the aboveground biomass dry matter of hydrangea, three 
plants per treatment, labelled G1, G2, and G3, were harvested during the 
seedling stage. Like the leaf samples, all fresh shoot samples were oven- 
dried at 105◦C for 30 min and then at 70◦C until a constant weight was 
reached to measure the shoot dry weight.

2.4. Spectral transformation

Before constructing the model, spectral reflectance data were pre
processed through standard normal variate (SNV) transformation and 
smoothed with a Savitzky-Golay (SG) filter, which considered the orig
inal spectra. To reduce noise and accurately reveal spectral character
istics, two transformation methods were used: FD and CWT. Sensitive 
spectral bands were identified by correlating the transformed spectra 
with nutrient content. The Pearson correlation coefficient (r) was 
calculated between individual spectral bands and nutrient contents. 
Using CWT, the analysis of the correlation between the original spectral 
curves and Gaussian functions across various positions and scales yiel
ded continuous wavelet energy coefficients. The Mexican hat wavelet 
(Mexh) served as the selected mother wavelet basis function, with 
decomposition scales set from 1 to 10, namely, 21, 22..., 210 (Wang et al., 
2020). Wavelet features were then extracted based on coefficient values 
correlating wavelet energy coefficients with nutrient content (Cheng 
et al., 2024).

2.5. Model building and result validation

The data were processed and analysed using the R statistical envi
ronment. Three models, including PLSR, RF, and CNN, were developed 
to predict the LNC and LPC of hydrangea. For model development, three 
algorithms were executed using the pls, random forest, and torch 
packages in the R language (release 4.2.1) by modifying the methods 
described in another study (Guo et al., 2017). The CNN architecture was 
a basic one-dimensional convolutional neural network. It consisted of 
three convolutional layers with 50, 20, and 10 filters. Each filter had a 
kernel size of 3. A ReLU activation function followed every convolu
tional layer. The feature maps from the third convolutional layer were 
flattened into a single vector and passed to a dense layer with a single 

node for output. The mean squared error was used as the loss function to 
train the model parameters. A simple random sampling method was 
used to allocate 70 % of the total samples to the training dataset, with 
the remaining 30 % of the samples reserved for the test dataset. To 
prevent overfitting problems, 10-fold cross-validation was used in our 
model training process. The model performance was evaluated using the 
coefficient of determination (R2) and the relative root-mean-square 
error (RRMSE) on the test dataset. The RRMSE was calculated by 
dividing the root mean square error (RMSE) by the average of the 
observed values (Ghorbani et al., 2017; Velumani et al., 2021). The 
model accuracy was rated as excellent when the RRMSE was < 10 %, 
good when 10 % < RRMSE < 20 %, fair when 20 % < RRMSE < 30 %, 
and poor if the RRMSE was ≥ 30 % (Li et al., 2013).

To classify hydrangea leaves based on different nutrient statuses, the 
hyperspectral data were processed using a supervised classification 
model (PNN). Similarly, 70 % of the total samples were selected as the 
training dataset, and the remaining 30 % were selected as the test 
dataset. The accuracy was evaluated based on overall accuracy (OA)=
(TN + TP)/ (TN + TP + FN + FP), precision= TP/ (TP + FP), and recall=
TP/ (TP + FN). However, accuracy alone is not sufficient for evaluating 
model performance, especially for imbalanced data or multiclass data 
(Guo et al., 2017). Therefore, Cohen’s kappa coefficient (kappa) was 
also used to evaluate the model performance and was calculated as 
follows: kappa= (p0 -pe)/(1-pe), where p0 was the observed agreement 
and pe was the expected agreement. All analyses were performed in 
MATLAB 2023a and R-4.2.1. A flowchart of the study is shown in Fig. 1.

3. Results

3.1. Biomass, N, and P concentrations

The biomass, LNC, and LPC were significantly different under the N 
and P treatments (Fig. 2A). Biomass responded positively to optimal N 
addition (N1–N2) but was negatively affected by low and high N addition 
rates (N0 and N3). At the G3 stage, all shoots died under N3 due to the 
high N level, resulting in no biomass recorded, while the biomass was 
greatest under N1 (1.14 g⋅plant− 1). This reflected the N statuses of the 
deficient (N0), medium (N1–N2), and surplus (N3) groups. LNC decreased 
with time from G1 to G3 at the seedling stage. N treatment significantly 
affected LNC, which increased sharply from N0 to N2 but slightly 
decreased in the N3 group at all stages.

Similarly, biomass was also significantly affected by P fertilisation, 
which was greatest under P2 (0.72 g⋅plant–1) and lowest under P3 (0.19 
g⋅plant–1). Additionally, the shoots with an optimum P status presented 
a constant increase in biomass (P1–P2) but were limited by low (P0) and 
surplus fertiliser addition (P3) (Fig. 2A). The LNC exhibited greater 
variation (15.68 to 49.84 mg⋅g–1) than the LPC (ranging from 2.63 to 

Fig. 1. Image acquisition platform and flowchart of the study.
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4.98 mg⋅g–1) (Fig. 2B). The phenotypic variations in hydrangea and their 
responses to N and P addition at the seedling stage were denoted as G1, 
G2, and G3, respectively (Fig. 2C).

3.2. Spectral features of leaves

As shown in Fig. 3A, the original spectra of all leaf samples had 
similar spectral characteristics, with prominent reflection peaks and 
absorption valleys across 400–1000 nm. A reflection peak was found 
around the green region (550 nm), whereas a prominent absorption 
valley occurred at about 670 nm in the red region. After applying FD 
transformation, baseline offsets and random noise were removed from 
the original spectra, leaving subtle yet significant wavelength informa
tion. The red edge position, located at about 710 nm, corresponded to 
the wavelength at which the FD value reached its maximum value 
(Fig. 3B).

The original spectra and the spectra after FD transformation under 
different N and P treatments are shown in Fig.4. These treatment effects 
were detected in either the visible (400–760 nm) or near-infrared (NIR, 
760–900 nm) spectral region. At the N level, hydrangea leaves under N0 
presented the highest reflectance in the visible region (Fig. 4A). In 

contrast, at the P level, hydrangea leaves under P3 presented greater 
reflectance in the visible region than those under the other treatments 
(Fig. 4C).

The “red-edge” region was involved in the transition from visible to 
NIR wavelengths. The FD values of the different N treatments were N0 >

N3 > N2 > N1 at the peak position near 710 nm, and the red edge po
sitions corresponding to N0, N1, N2, and N3 were 705, 713, 709, and 709 
nm, respectively (Fig. 4B). In the P treatments, the values were P3 > P2 >

P1 > P0, and the red edge positions corresponding to P0, P1, P2, and P3 
were 728, 728,728, and 713 nm, respectively (Fig. 4D). When N defi
cient (N0) and P surplus (P3) leaves were present, the feature of the 
spectra characteristically shifted to lower wavelengths, a phenomenon 
observed in the range of the NIR region by FD. In general, the P treat
ments presented a lower variation in reflectance than the N treatments 
at all wavebands.

After a 10-dimensional CWT, the spectral curves were relatively flat, 
lacking identifiable features at the lower scales [1, 2, 3]. However, from 
scales [4, 5, 6], the spectra became wave-like before transitioning to 
parabolic forms at scales [7, 8] and finally appeared as nearly straight 
lines at the highest scales [9, 10]. The spectral features under the N and 
P treatments (Fig. 5A, B) were significantly more pronounced than those 

Fig. 2. Phenotypes of hydrangea seedlings grown under different N and P conditions. N was applied at four rates: N0 (0 g⋅pot–1), N1 (0.4 g⋅pot–1), N2 (0.8 g⋅pot–1), 
and N3 (1.2 g⋅pot–1). The P level was applied at four rates: P0 (0 g⋅pot–1), P1 (0.15 g⋅pot–1), P2 (0.3 g⋅pot–1), and P3 (0.45 g⋅pot–1). The control was treated without N 
or P fertilisers. G1, G2, and G3 correspond to the development phases at 20, 40, and 60 days following the initial fertilisation, respectively. (A) The biomass, LNC, and 
LPC under different treatments at the seedling stage are presented. At the G3 stage, all shoots died in the N3 group due to high N levels, resulting in no recorded 
biomass. (B) Variation in LNC and LPC. (C) Leaves and canopies of seedlings under different treatments are shown. An asterisk (*) indicates a significant difference at 
P < 0.05.

Fig. 3. Spectra of all hydrangea leaves. (A) The original spectra. (B) The spectra after FD transformation.
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under the control ((Fig. 5C) at mid-range scales, particularly at scales [6] 
and [7], highlighting the transformative effect of these treatments on the 
spectral characteristics.

3.3. Correlation analysis

3.3.1. Correlation between nutrient content and first derivative spectra
To use the leaf spectra for predicting nutrient content, we conducted 

a correlation analysis between the FD spectra and nutrient content. The 
results revealed that more wavebands exhibited highly significant cor
relations after the raw spectra were processed via FD transformation 
(Fig. 6). For the N level, the highest correlation coefficient (r) of the raw 
spectra was found near 569 nm (–0.68) (Fig. 6A). In the FD spectra, the 
highest r (0.71) was observed near 782 nm (Fig. 6B). The correlation 
remained high (r > 0.65) in the range of 599–660 nm. For the P level, the 
highest r of the raw spectra was found near 652 nm (–0.30) (Fig. 6C). In 

the FD spectra, the highest r was found near 458 nm (–0.35). The cor
relation coefficient remained high (close to 0.3) in the range of 652–674 
nm (Fig. 6D). Therefore, the FD spectra were selected as the independent 
variables for the prediction model based on their strong correlation with 
nutrient content.

3.3.2. Correlation between nutrient content and CWT
The correlation between hydrangea leaf spectra and nutrient con

tents after CWT is shown in Fig. 7. The r values were considerably 
greater for LNC than for LPC. LNC-sensitive bands (P < 0.05) were 
predominantly found at scales [5, 6, 7], whereas LPC-sensitive bands (P 
< 0.05) were concentrated at scales [6, 7]. Specifically, at the N level, a 
wavelet feature at 462 nm and scale [6] showed the strongest negative 
correlation (r= –0.90). At the P level, the strongest negative correlation 
(r= –0.87) was observed at 809 nm and scale [1].

These findings suggested that compared to the FD transform, CWT 

Fig. 4. Original spectra (A and C) and spectra after FD transformation (B and D) under different N and P treatments. N treatment: N0 (0 g⋅pot–1), N1 (0.4 g⋅pot–1), N2 
(0.8 g⋅pot–1), and N3 (1.2 g⋅pot–1). P treatment: P0 (0 g⋅pot–1), P1 (0.15 g⋅pot–1), P2 (0.3 g⋅pot–1), and P3 (0.45 g⋅pot–1).

Fig. 5. Changes in the wavelet transform reflectance of leaf spectra under different nutritional statuses: (A) N treatment, (B) P treatment, and (C) control.

Fig. 6. Correlation analysis between different spectral data and the contents of N and P. Original spectra (A and C) and the first derivative spectra (B and D). The two 
red dashed lines below and above indicate a significance level of 0.05.
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effectively increased the correlation values. The magnitude of the cor
relation coefficients and the number of sensitive bands significantly 
increased at scale [6] under the N and P treatments, highlighting that the 
wavelet transform was effective at this scale for analysing the original 
spectrum.

3.4. Single leaf estimation models based on hyperspectral images

Models were developed to predict the LNC and LPC using full spectra 
processed by FD transformation; three machine-learning techniques 
were used to construct the models. The scatter plots of the predicted 

Fig. 7. Absolute values of correlation coefficients of different wavelet coefficients with leaf nutrient contents: (A) N treatment; (B) P treatment.

Fig. 8. Relationships between the predicted and measured variables (LNC and LPC) using three models. The dashed line corresponds to a 1:1 linear fit.
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versus measured LNC and LPC values are shown in Fig. 8, with regres
sion plots illustrating the relationship between the predicted and actual 
measurements. The PLSR model used 50 latent variables to capture the 
relationships effectively between the predictor and response variables.

To assess model convergence and performance, Fig. 9 shows the loss 
during training and validation for the CNN model, with LNC prediction 
used as an example. The training loss (red) and validation loss (black) 
were plotted as functions of the number of epochs. A small difference 
between the training and validation losses indicated effective model 
training, which helped avoid overfitting. Optimal results were achieved 
at about 100 epochs.

For LNC predictions, the models achieved R2 values ranging from 
0.706 to 0.928, and the RRMSE values ranged from 18.3 % to 19.7 %. 
The PLSR model had the highest R2 of 0.928, followed by the CNN model 
(R2= 0.920) and the RF model (R2= 0.706). The CNN model exhibited 
the lowest RRMSE at 18.3 %. The LPC predictions performed worse than 
the LNC predictions, with R2 values ranging from 0.372 to 0.760. The 
PLSR model for LPC had the lowest RRMSE of 25.4 %. Overall, the re
sults showed that the RF model performed the poorest, whereas the 
PLSR model performed well, similar to the CNN model.

To assess whether the wavelet transform could further improve 
prediction accuracy, models incorporating CWT were developed using 
PLSR. Correlation coefficients (r values) across various scales were 
determined to create a correlation scalogram. To reduce redundancy, 
the r values obtained were sorted in descending order, retaining only the 
top 5 % as significant wavelet feature regions and yielding 88 key fea
tures. All selected features showed strong correlations with LNC and LPC 
(P < 0.05). The threshold for the top 5 % absolute r value was 0.823 for 
LNC and 0.684 for LPC. Model performance improvements were notable 
(Fig. 10). For LNC prediction, the model achieved an R2 of 0.947 and an 
RRMSE of 9.6 %, whereas for LPC prediction, the R2 was 0.827 and the 
RRMSE was 10.6 %.

The contributions of the top 10 sensitive wavelet features of the PLSR 
model are shown in Fig. 11. For N, the feature importance of 550 nm was 
the highest (0.06), representing 6 % of the contribution. For P, the 
feature importance of 1030 nm was the highest (0.08), representing 8 % 
of the contribution.

3.5. Discrimination model validation

To illustrate how the hydrangea leaves were classified into different 
nutrient states, confusion matrices were created using the PNN model. 
The N and P levels were categorised into three classes, i.e., deficiency, 
medium, and surplus, based on the measured LNC, LPC, biomass, and 

plant growth state. The leaf samples were marked as deficient (N0), 
medium (N1–N2), or surplus (N3) for the N level and as deficient (P0), 
medium (P1–P2), or surplus (P3) for the P level.

Table 2 summarises the confusion matrices, overall accuracy (OA), 
and kappa values for different nutrient states. All categories had pre
diction accuracies higher than 95 % in all classes. The N classification of 
the model achieved higher OA and kappa values than the P classifica
tion, with OA of 99.8 % and 99.4 %, respectively, and kappa values of 
0.997 and 0.989, respectively. N deficiency had the highest prediction 
accuracy at 100 %, while the performance of the model in predicting 
excessive N had the lowest prediction accuracy at 97.8 %. The results 
confirmed that with the addition of N, the N status was more difficult to 
recognise via spectral reflectance.

There were some differences in the classification of P. The highest 
percentage of correctly classified cases was observed under P surplus 
(100 %). This may be due to excessive P causing stress, as indicated by 
the lowest biomass and highest spectral reflectance under the different P 
treatments. In the other categories, the accuracy for the medium P level 
was lower than that for P deficiency. This could be explained by the fact 
that the medium P level is closer to the high and low levels, making it 
more difficult to distinguish than the other two classes.

4. Discussion

Studies have shown that spectral reflectance can indicate plant 
nutrient conditions. The visible (VIS, 400–760 nm) and near-infrared 
(NIR, 760–900 nm) spectra are often used to distinguish between N 
and P. As reported by Zhang et al. (2023), our study confirmed that N 
and P deficiencies increased reflectance in the VIS and decreased 
reflectance in the NIR. Other studies have reported that the red-edge 
region is important for distinguishing N and P levels (Mutanga and 
Kumar, 2007; Cho and Skidmore, 2006). We also found that the red-edge 
position for N was around 710 nm, which is strongly linked to chloro
phyll (Abdel-Rahman et al., 2010). For the P level, the red-edge posi
tions were identified at 713 nm and 728 nm, which matched the findings 
reported by Guo et al. (2018). The relationship between the LPC and 
red-edge wavelengths was also influenced by chlorophyll. When LPC is 
low or absent, the chlorophyll content decreases, and the anthocyanin 
content increases, which can cause the leaf surface to become purple (Li 
et al., 2016). These findings suggest that changes in red-edge wave
lengths are associated with the chlorophyll content and nutrient 
statuses.

We also compared the results of nutrient content with those of two 
spectral transformations: FD and CWT. After FD treatment, correlation 
analysis revealed that the wavelengths most strongly correlated with 
LNC (599–660 nm) and LPC (653–674 nm) were located primarily in the 
red-edge region. The highest correlation for LNC was found at 782 nm 
(r= 0.71), whereas 458 nm had a negative correlation with LPC (r=
–0.35). These findings highlight the importance of red and blue regions 
for nutrient prediction, with 782 nm being closely associated with the 
absorption of chlorophyll a (Osborne et al., 2002) and 458 nm being 
close to the chlorophyll b absorption characteristic (Curran, 1989). 
Compared to FD, CWT provided even more effective dimensionality 
reduction, denoising, and enhanced correlation with N and P levels 
(Cheng et al., 2012), achieving correlations of r= –0.90 and r= –0.87, 
respectively. These results suggest that CWT can effectively extract more 
reliable spectral features, making it an ideal preprocessing technique for 
hyperspectral data analysis.

While comparing the PLSR, RF, and CNN algorithms for estimating 
LNC and LPC, we found that RF was the least effective, whereas PLSR 
showed performance similar to that of CNN. After using CWT, the PLSR 
models outperformed the other algorithms, achieving improved pre
diction accuracy while reducing the number of input variables. This 
matched the findings of Yang et al. (2021), who emphasised the 
robustness and stability of PLSR. For LNC and LPC estimation, the VIS 
and NIR regions were identified as important, with sensitive bands at Fig. 9. CNN training loss curves.
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about 550 nm at scale [5] for LNC and 1030 nm at scale [6] for LPC, 
confirming the relevance of these wavelengths for plant nutrient pre
diction (Zhang et al., 2023).

Overall, the prediction of LNC was better than that of LPC in all 
models, probably because of a weaker correlation of spectral reflectance 
with LPC within the 400–1000 nm range. This indicates that detecting P 
deficiencies is challenging, as they rarely show visible symptoms like 
chlorosis at early stages. In contrast, N deficiencies are typically easier to 
identify (Pinit et al., 2022). This finding aligns with the understanding 
that P shortage not only reduces LNC but also hinders ATP synthase 
activity, disrupting the electron transport chain and leading to transient 
changes in chlorophyll a fluorescence (Carstensen et al., 2018). Our 
discrimination model, which uses PNN algorithms, confirmed these 
observations, showing a slightly lower overall accuracy in identifying P 
than in identifying N.

By combining hyperspectral spectroscopy with CWT, we developed a 
reliable, efficient method for estimating plant nutrients, particularly for 
hydrangea cultivation. Compared to other studies, our study more 

effectively addressed the challenge of weak spectral correlations with 
LPC. The models developed in this study, particularly the CWT-PLSR 
approach, can be used in future precision agriculture applications, of
fering improved nutrient management and potentially extending to 
other crops.

5. Conclusion

In this study, we successfully used hyperspectral spectroscopy to 
characterise N and P in hydrangea. By applying spectral preprocessing 
techniques such as FD and CWT, we extracted more detailed spectral 
information, improving the ability to characterise plant nutrition. By 
comparing different preprocessing methods, we found that CWT out
performs FD in terms of spectral data quality and prediction accuracy. 
The PLSR model, coupled with CWT, provided the best predictions for 
LNC and LPC, achieving high accuracy (R2= 0.947, RRMSE= 9.6 % for 
LNC; R2= 0.827, RRMSE= 10.6 % for LPC). This method significantly 
decreased the number of input variables without decreasing prediction 

Fig. 10. Relationships between the predicted and observed variables (LNC and LPC) using the PLSR model. The dashed line corresponds to a 1:1 linear fit.

Fig. 11. The importance of the top 10 features of PLSR models based on multiple wavelet features.

Table 2 
Confusion matrices, OA, and kappa coefficients of the PNN model under different nutrient statuses.

Model (PNN) Predicted Class Precision Recall OA Kappa

Deficiency Medium Surplus

Actual 
Class 
(N)

Deficiency 804 0 0 100 % 100 % 99.8 % 0.997
Medium 0 630 0 99.5 % 100 %
Surplus 0 3 132 100 % 97.8 %

Actual 
Class 
(P)

Deficiency 801 3 0 99.3 % 99.6 % 99.4 % 0.989
Medium 6 687 0 99.6 % 99.1 %
Surplus 0 0 75 100 % 100 %
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performance. Additionally, the classification model (PNN) achieved 
over 95 % accuracy in distinguishing between N and P nutrient statuses. 
The findings of this study can provide a robust foundation for the use of 
hyperspectral spectroscopy in precision nutrient management for the 
cultivation of hydrangea and other crops. The CWT-PLSR model devel
oped in this study offers a promising approach to improve crop man
agement through more efficient and accurate nutrient estimation; future 
studies should focus on refining these models for field conditions.
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