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ARTICLE INFO ABSTRACT

Keywords: Hyperspectral imaging is a powerful, non-destructive tool that has shown promise in estimating plant nutrition
Hyperspectral reconstruction but remains underexplored for Hydrangea macrophylla, an important ornamental shrub. In this study, we
tgcc developed regression and discrimination models for assessing nitrogen (N) and phosphorus (P) statuses in hy-

drangea at the seeding stage using spectral data combined with machine learning techniques. Spectral reflec-
tance data, captured across various nutritional states following different N and P fertilisation treatments, were
paired with laboratory-measured leaf nitrogen content (LNC) and leaf phosphorus content (LPC) data. Spectral
reflectance data captured under various N and P treatments were processed with first derivative (FD) and
continuous wavelet transform (CWT) to improve the data quality. The results of the correlation analysis revealed
that the CWT was more strongly correlated with N (r = -0.90) and P (r = —-0.87) than with FD. The machine
learning models, which were provided with full-band and wavelet features, showed that the partial least squares
regression (PLSR) model, which was integrated with the CWT, could accurately predict LNC (R? = 0.947, RRMSE
= 9.6 %) and LPC (R2 = 0.827, RRMSE = 10.6 %). Additionally, the PNN model classified nutrient statuses with
over 95 % accuracy. Notably, N predictions outperformed those for P, probably because of weaker spectral
correlations with P. These findings highlight the potential of hyperspectral imaging and machine learning for
precise nutrient management in hydrangea cultivation and contribute to sustainable agricultural practices
globally.

Machine learning

1. Introduction important for the production of hydrangea nurseries and for reducing
global environmental pollution.
Recent advancements in agricultural technologies have revealed

ways to address environmental and economic challenges while

Hydrangea macrophylla, commonly known as bigleaf or French hy-
drangea, is cultivated worldwide for ornamental and medicinal purposes

(Li et al., 2018). It is grown as deciduous woody shrubs for landscaping
or used as potted plants and cut flowers (Anderson et al., 2009). Ac-
cording to the 2019 Census of Horticultural Specialties, the sale value of
hydrangeas as nursery stock in the United States was $106,862,000,
ranking hydrangeas as the third most productive cultivated deciduous
shrub (USDA, 2019). Although it is economically important, hydrangea
cultivation faces challenges related to high nutrient demands, particu-
larly for nitrogen (N) and phosphorus (P), which are required for many
key physiological and biochemical processes (Guo et al., 2018). Nutrient
deficiencies or excesses can limit productivity and lead to environmental
issues such as pollution from fertiliser runoff (Shreckhise et al., 2019).
Therefore, the rational application of N and P fertilisers is highly
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improving human life and promoting sustainable development (Amiri
et al., 2025; Hanafi et al., 2024; Imani et al., 2025; Zinatloo-Ajabshir
et al., 2025; Zonarsaghar et al., 2022). These innovative techniques
highlight the importance of integrating sustainable practices into hor-
ticulture. Traditional nutrition diagnosis methods (such as the Kjeldahl
digestion method) are time-consuming, expensive, and labour-intensive.
Hyperspectral imaging is a valuable tool for non-destructive nutrient
diagnosis. It is accurate, sustainable, and can process high-dimensional
data (Ball et al., 2022). This technology has been applied to estimate leaf
nitrogen content (LNC) and leaf phosphorus content (LPC) in various
crop species, including rice, wheat, and cotton (Li et al., 2021; Sun et al.,
2019; Wang et al., 2021). However, its application to hydrangea, a
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popular and economically important ornamental plant, remains
underexplored.

Recently, machine learning, in conjunction with hyperspectral im-
aging, has offered new possibilities for improving the accuracy and ef-
ficiency of nutrient diagnosis. Models such as partial least squares
regression (PLSR), random forest (RF), and convolutional neural net-
works (CNNs) have shown promise in estimating nutrient content from
spectral data (Guo et al., 2018; Pourdarbani et al., 2021; Wang et al.,
2023). The predictive accuracy of the N models at the leaf scale shows
considerable variation, with R? values ranging from 0.37 to 0.99. In
contrast, P models present R? values ranging from 0.32 to 0.95, indi-
cating moderate-to-high precision (Watt et al., 2020). This variance
highlights the disparate efficacy of different models in estimating N and
P levels, highlighting the importance of choosing appropriate input
variables for machine learning algorithms. A promising approach to
further refine modelling accuracy and reduce dimensionality involves
integrating wavelet analysis with machine learning.

The continuous wavelet transformation (CWT), a signal processing
technique, excels in localising information in both the frequency and
time domains and deconstructing signals across various scales and po-
sitions (Cheng et al., 2011). Its application has improved model preci-
sion for assessing LNC and LPC, outperforming traditional spectral
transformations such as the first derivative (FD) (Gu et al., 2022). Some
studies have revealed the efficacy of combining CWT with PLSR for
extracting plant water status, phosphorus (P), or biomass from hyper-
spectral reflectance data (Gu et al., 2022; Zhang et al., 2023; Zhuang
et al., 2023). Additionally, timely guidance and early detection of the
nutrition status of hydrangea are highly important to farmers. The
probabilistic neural network (PNN) is a robust method for rapidly
detecting nutrient status and is crucial for timely agricultural manage-
ment (Azlah et al., 2019). It has been applied in fields such as plant
nutrition diagnosis (Lou et al., 2022), foliar biotic damage discrimina-
tion (Liu et al., 2018), and leaf identification (Abdulazeez et al., 2021).

Despite the advances in hyperspectral imaging and machine learning
for plant nutrition, challenges remain in generalising these models
owing to variations in spectral responses under different nutritional
states, particularly during crucial growth phases. This study aimed to (1)
elucidate the spectral responses of hydrangea leaves to different N and P
fertilisation via hyperspectral imaging technology; (2) assess the effi-
cacy of machine learning models, comparing different spectral trans-
formations (FD and CWT), to identify an optimal model for estimating
the N and P contents of hydrangea leaves; (3) validate the precision of
discriminants for different N and P statuses using the PNN model. These
findings can contribute to improving precise nutrient management
practices in hydrangea cultivation and promote global efforts in sus-
tainable agricultural development.

2. Materials and methods
2.1. Experimental design and crop growing

A pot experiment was conducted at Chenshan Botanical Garden in
Songjiang District, Shanghai (31.08 N, 121.77 E). Root cuttings of
H. macrophylla ‘Hanatemari’ (obtained from Hangzhou Landscaping Inc.
in August 2021) were planted in pots (13 cm external diameter, 9 cm
bottom diameter, and 11 cm height) filled with a substrate mixture of
peat moss, perlite, and coconut husk (3:1:1 volume ratio). The chemical
characteristics of the substrate were as follows: pH, 6.45; EC, 1.27
mS~cm’1; total N, 7.96 mg~g'l; total P, 1.09; total K, 3.33 mg-g'l; and
organic matter, 865.18 g-kg™'. No basal fertiliser was added to the
substrate before the treatment was applied. The plants were cultivated
for eight weeks in a climatic room with no sunlight under a 16-h
photoperiod with a PPFD of 101.93 pmol m2s™! supplied by LED
lights. The temperature of the chamber was maintained at 25 +0.5°C,
and the relative humidity (RH) was 60 %. The plants were watered with
unfertilised tap water during this period.
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The plants had 4-5 leaf pairs before the treatments began. From
November 2021 to January 2022, the plants were subjected to four N
treatments (0, 0.4, 0.8, and 1.2 g per pot, corresponding to Ny, N1, No,
and Ng3, respectively) and four P treatments (0, 0.15, 0.3, and 0.45 g per
pot, corresponding to Py, Pj, Py, and Ps3, respectively). The plants
without N and P fertilisers were treated as the control (CK). A fixed K
dosage (1.48 g K3SO4 per pot) was applied across all treatments. Based
on our preliminary fertiliser experimental results, N, Po, and K were
determined using the appropriate application rates (Wang et al., 2022).
A completely randomised block design with 30 replications was used to
allocate each treatment (Table 1).

Urea (containing 46.6 % N), calcium superphosphate (containing
14.5 % P,05), and K2SO4 (containing 54.1 % K0) were selected as the
N, P, and K fertilisers, respectively. Seven parts of urea and K,SO4 were
applied every seven days. Calcium superphosphate was applied in three
portions every fifteen days. Images and plant tissue samples were
collected at four development stages, namely, GO, G1, G2, and G3,
which corresponded to 0, 20, 40, and 60 days following the initial fer-
tilisation, respectively. Specifically, GO, G1l, G2, and G3 were on
November 23, 2021, December 13, 2021, January 2, 2022, and January
22, 2022.

2.2. Image acquisition and processing

A GaiaSky-mini2-VN hyperspectral imaging system (Dualix Spectral
Imaging Technology Co., Ltd., Sichuan, China) was used to acquire
hyperspectral images of the leaves. The system offered a spectral range
of 400 to 1000 nm and a spectral resolution of 3 +£0.5 nm. The hyper-
spectral imager, equipped with a 16 mm lens, was mounted at a height of
about 30 cm within a field of view of 36.25°. The images were captured
at a spatial resolution of 0.2 mm, with dimensions of 960 x 1040 pixels.
The push-broom method was used, which involved the camera moving
across the scene to construct a two-dimensional image. Full-spectrum
halogen lamps served as the light source for the system. To decrease
the effect of ambient light, the entire setup was enclosed in a black box
(Fig. 1).

The leaf sample was placed in the centre of the black background
plate to ensure that it was spread as flat as possible without significant
curling or folding. Hyperspectral images were captured using the data
acquisition software SpecView. Reflectance values from the raw data
were obtained via white and dark calibrations, following the approach
described in another study (Baranowski et al., 2015). The calibrated
hyperspectral images were imported into R-4.2.1, where the edges of the
leaf were identified using the raster package, and the average spectral
curve for all pixels within the leaf in each image was calculated. The
second pair of fully expanded leaves, not shaded by other leaves, was
picked to acquire hyperspectral images from the G1 to G3 growth pe-
riods, with 10-20 replicates for each treatment. In total, 405 leaf sam-
ples were collected.

Table 1
Fertiliser treatments of H. macrophylla ‘Hanatemari’.

NO. Treatment Each nutrient Fertilising amount (g-pot™)

consumption

(g-pot™)

N P,0s5 K,0 Urea  Calcium K2SO4

superphosphate

T1 No 0 0.3 0.8 0 2.07 1.48
T2 N; 0.4 0.3 0.8 0.86 2.07 1.48
T3 N2&Py 0.8 03 0.8 1.72  2.07 1.48
T4 N3 1.2 03 0.8 2.58  2.07 1.48
TS5 Py 0.8 0 0.8 1.72 0 1.48
T6 P 0.8 0.15 0.8 1.72  1.03 1.48
T7 P3 0.8 0.45 0.8 1.72  3.10 1.48
T8 CK 0 0 0.8 0 0 1.48
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Fig. 1. Image acquisition platform and flowchart of the study.

2.3. Analytical reference measurements

After the spectral data were collected, the leaf samples were har-
vested to measure LNC and LPC. The samples were first oven-dried at
105°C for 30 min and then dried at 70°C until they reached a constant
dry mass (Wang et al., 2022). The leaf samples were finely ground and
analysed for their N and P contents using the Kjeldahl method (Li et al.,
2021) and the molybdate blue colorimetric method (Zhang et al., 2023),
respectively.

To assess the aboveground biomass dry matter of hydrangea, three
plants per treatment, labelled G1, G2, and G3, were harvested during the
seedling stage. Like the leaf samples, all fresh shoot samples were oven-
dried at 105°C for 30 min and then at 70°C until a constant weight was
reached to measure the shoot dry weight.

2.4. Spectral transformation

Before constructing the model, spectral reflectance data were pre-
processed through standard normal variate (SNV) transformation and
smoothed with a Savitzky-Golay (SG) filter, which considered the orig-
inal spectra. To reduce noise and accurately reveal spectral character-
istics, two transformation methods were used: FD and CWT. Sensitive
spectral bands were identified by correlating the transformed spectra
with nutrient content. The Pearson correlation coefficient (r) was
calculated between individual spectral bands and nutrient contents.
Using CWT, the analysis of the correlation between the original spectral
curves and Gaussian functions across various positions and scales yiel-
ded continuous wavelet energy coefficients. The Mexican hat wavelet
(Mexh) served as the selected mother wavelet basis function, with
decomposition scales set from 1 to 10, namely, 21 22, 210 (Wang et al.,
2020). Wavelet features were then extracted based on coefficient values
correlating wavelet energy coefficients with nutrient content (Cheng
et al., 2024).

2.5. Model building and result validation

The data were processed and analysed using the R statistical envi-
ronment. Three models, including PLSR, RF, and CNN, were developed
to predict the LNC and LPC of hydrangea. For model development, three
algorithms were executed using the pls, random forest, and torch
packages in the R language (release 4.2.1) by modifying the methods
described in another study (Guo et al., 2017). The CNN architecture was
a basic one-dimensional convolutional neural network. It consisted of
three convolutional layers with 50, 20, and 10 filters. Each filter had a
kernel size of 3. A ReLU activation function followed every convolu-
tional layer. The feature maps from the third convolutional layer were
flattened into a single vector and passed to a dense layer with a single

node for output. The mean squared error was used as the loss function to
train the model parameters. A simple random sampling method was
used to allocate 70 % of the total samples to the training dataset, with
the remaining 30 % of the samples reserved for the test dataset. To
prevent overfitting problems, 10-fold cross-validation was used in our
model training process. The model performance was evaluated using the
coefficient of determination (R?) and the relative root-mean-square
error (RRMSE) on the test dataset. The RRMSE was calculated by
dividing the root mean square error (RMSE) by the average of the
observed values (Ghorbani et al., 2017; Velumani et al., 2021). The
model accuracy was rated as excellent when the RRMSE was < 10 %,
good when 10 % < RRMSE < 20 %, fair when 20 % < RRMSE < 30 %,
and poor if the RRMSE was > 30 % (Li et al., 2013).

To classify hydrangea leaves based on different nutrient statuses, the
hyperspectral data were processed using a supervised classification
model (PNN). Similarly, 70 % of the total samples were selected as the
training dataset, and the remaining 30 % were selected as the test
dataset. The accuracy was evaluated based on overall accuracy (OA)=
(TN + TP)/ (TN + TP + FN + FP), precision= TP/ (TP + FP), and recall=
TP/ (TP + FN). However, accuracy alone is not sufficient for evaluating
model performance, especially for imbalanced data or multiclass data
(Guo et al., 2017). Therefore, Cohen’s kappa coefficient (kappa) was
also used to evaluate the model performance and was calculated as
follows: kappa= (pg -pe)/(1-p.), where py was the observed agreement
and p, was the expected agreement. All analyses were performed in
MATLAB 2023a and R-4.2.1. A flowchart of the study is shown in Fig. 1.

3. Results
3.1. Biomass, N, and P concentrations

The biomass, LNC, and LPC were significantly different under the N
and P treatments (Fig. 2A). Biomass responded positively to optimal N
addition (N1-Ny) but was negatively affected by low and high N addition
rates (No and N3). At the G3 stage, all shoots died under N3 due to the
high N level, resulting in no biomass recorded, while the biomass was
greatest under Ny (1.14 g-plant™!). This reflected the N statuses of the
deficient (Np), medium (N;-Ny), and surplus (N3) groups. LNC decreased
with time from G; to Gj at the seedling stage. N treatment significantly
affected LNC, which increased sharply from Ny to Ny but slightly
decreased in the N3 group at all stages.

Similarly, biomass was also significantly affected by P fertilisation,
which was greatest under P, (0.72 gvplant’l) and lowest under P3 (0.19
g-plant™). Additionally, the shoots with an optimum P status presented
a constant increase in biomass (P;-P3) but were limited by low (Pg) and
surplus fertiliser addition (P3) (Fig. 2A). The LNC exhibited greater
variation (15.68 to 49.84 mg-g’l) than the LPC (ranging from 2.63 to
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Fig. 2. Phenotypes of hydrangea seedlings grown under different N and P conditions. N was applied at four rates: Np (0 g-pot™), Ny (0.4 g-pot ™), N, (0.8 g-pot™2),
and N3 (1.2 g~p0t’1). The P level was applied at four rates: Py (0 g-pot’l), P, (0.15 g-pot’l), P, (0.3 g~p0t’1), and P53 (0.45 g~pot’1). The control was treated without N
or P fertilisers. G1, G2, and G3 correspond to the development phases at 20, 40, and 60 days following the initial fertilisation, respectively. (A) The biomass, LNC, and
LPC under different treatments at the seedling stage are presented. At the G3 stage, all shoots died in the N3 group due to high N levels, resulting in no recorded
biomass. (B) Variation in LNC and LPC. (C) Leaves and canopies of seedlings under different treatments are shown. An asterisk (*) indicates a significant difference at

P < 0.05.

4.98 mg-g) (Fig. 2B). The phenotypic variations in hydrangea and their
responses to N and P addition at the seedling stage were denoted as G1,
G2, and G3, respectively (Fig. 2C).

3.2. Spectral features of leaves

As shown in Fig. 3A, the original spectra of all leaf samples had
similar spectral characteristics, with prominent reflection peaks and
absorption valleys across 400-1000 nm. A reflection peak was found
around the green region (550 nm), whereas a prominent absorption
valley occurred at about 670 nm in the red region. After applying FD
transformation, baseline offsets and random noise were removed from
the original spectra, leaving subtle yet significant wavelength informa-
tion. The red edge position, located at about 710 nm, corresponded to
the wavelength at which the FD value reached its maximum value
(Fig. 3B).

The original spectra and the spectra after FD transformation under
different N and P treatments are shown in Fig.4. These treatment effects
were detected in either the visible (400-760 nm) or near-infrared (NIR,
760-900 nm) spectral region. At the N level, hydrangea leaves under Ny
presented the highest reflectance in the visible region (Fig. 4A). In

contrast, at the P level, hydrangea leaves under P3 presented greater
reflectance in the visible region than those under the other treatments
(Fig. 4C).

The “red-edge” region was involved in the transition from visible to
NIR wavelengths. The FD values of the different N treatments were Ny >
N3 > Na > Nj at the peak position near 710 nm, and the red edge po-
sitions corresponding to No, N1, N3, and N3 were 705, 713, 709, and 709
nm, respectively (Fig. 4B). In the P treatments, the values were P3 > P5 >
P; > Py, and the red edge positions corresponding to Py, Py, P5, and P3
were 728, 728,728, and 713 nm, respectively (Fig. 4D). When N defi-
cient (Ng) and P surplus (P3) leaves were present, the feature of the
spectra characteristically shifted to lower wavelengths, a phenomenon
observed in the range of the NIR region by FD. In general, the P treat-
ments presented a lower variation in reflectance than the N treatments
at all wavebands.

After a 10-dimensional CWT, the spectral curves were relatively flat,
lacking identifiable features at the lower scales [1, 2, 3]. However, from
scales [4, 5, 6], the spectra became wave-like before transitioning to
parabolic forms at scales [7, 8] and finally appeared as nearly straight
lines at the highest scales [9, 10]. The spectral features under the N and
P treatments (Fig. 5A, B) were significantly more pronounced than those
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Fig. 3. Spectra of all hydrangea leaves. (A) The original spectra. (B) The spectra after FD transformation.
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Fig. 5. Changes in the wavelet transform reflectance of leaf spectra under different nutritional statuses: (A) N treatment, (B) P treatment, and (C) control.

under the control ((Fig. 5C) at mid-range scales, particularly at scales [6]
and [7], highlighting the transformative effect of these treatments on the
spectral characteristics.

3.3. Correlation analysis

3.3.1. Correlation between nutrient content and first derivative spectra

To use the leaf spectra for predicting nutrient content, we conducted
a correlation analysis between the FD spectra and nutrient content. The
results revealed that more wavebands exhibited highly significant cor-
relations after the raw spectra were processed via FD transformation
(Fig. 6). For the N level, the highest correlation coefficient (r) of the raw
spectra was found near 569 nm (-0.68) (Fig. 6A). In the FD spectra, the
highest r (0.71) was observed near 782 nm (Fig. 6B). The correlation
remained high (r > 0.65) in the range of 599-660 nm. For the P level, the
highest r of the raw spectra was found near 652 nm (-0.30) (Fig. 6C). In

Nitrogen

the FD spectra, the highest r was found near 458 nm (-0.35). The cor-
relation coefficient remained high (close to 0.3) in the range of 652-674
nm (Fig. 6D). Therefore, the FD spectra were selected as the independent
variables for the prediction model based on their strong correlation with
nutrient content.

3.3.2. Correlation between nutrient content and CWT

The correlation between hydrangea leaf spectra and nutrient con-
tents after CWT is shown in Fig. 7. The r values were considerably
greater for LNC than for LPC. LNC-sensitive bands (P < 0.05) were
predominantly found at scales [5, 6, 7], whereas LPC-sensitive bands (P
< 0.05) were concentrated at scales [6, 7]. Specifically, at the N level, a
wavelet feature at 462 nm and scale [6] showed the strongest negative
correlation (r=-0.90). At the P level, the strongest negative correlation
(r= -0.87) was observed at 809 nm and scale [1].

These findings suggested that compared to the FD transform, CWT

Phosphorus
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Fig. 6. Correlation analysis between different spectral data and the contents of N and P. Original spectra (A and C) and the first derivative spectra (B and D). The two

red dashed lines below and above indicate a significance level of 0.05.
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effectively increased the correlation values. The magnitude of the cor- 3.4. Single leaf estimation models based on hyperspectral images
relation coefficients and the number of sensitive bands significantly
increased at scale [6] under the N and P treatments, highlighting that the Models were developed to predict the LNC and LPC using full spectra
wavelet transform was effective at this scale for analysing the original processed by FD transformation; three machine-learning techniques
spectrum. were used to construct the models. The scatter plots of the predicted
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versus measured LNC and LPC values are shown in Fig. 8, with regres-
sion plots illustrating the relationship between the predicted and actual
measurements. The PLSR model used 50 latent variables to capture the
relationships effectively between the predictor and response variables.

To assess model convergence and performance, Fig. 9 shows the loss
during training and validation for the CNN model, with LNC prediction
used as an example. The training loss (red) and validation loss (black)
were plotted as functions of the number of epochs. A small difference
between the training and validation losses indicated effective model
training, which helped avoid overfitting. Optimal results were achieved
at about 100 epochs.

For LNC predictions, the models achieved R? values ranging from
0.706 to 0.928, and the RRMSE values ranged from 18.3 % to 19.7 %.
The PLSR model had the highest R? of 0.928, followed by the CNN model
(R?= 0.920) and the RF model (R*= 0.706). The CNN model exhibited
the lowest RRMSE at 18.3 %. The LPC predictions performed worse than
the LNC predictions, with R? values ranging from 0.372 to 0.760. The
PLSR model for LPC had the lowest RRMSE of 25.4 %. Overall, the re-
sults showed that the RF model performed the poorest, whereas the
PLSR model performed well, similar to the CNN model.

To assess whether the wavelet transform could further improve
prediction accuracy, models incorporating CWT were developed using
PLSR. Correlation coefficients (r values) across various scales were
determined to create a correlation scalogram. To reduce redundancy,
the r values obtained were sorted in descending order, retaining only the
top 5 % as significant wavelet feature regions and yielding 88 key fea-
tures. All selected features showed strong correlations with LNC and LPC
(P < 0.05). The threshold for the top 5 % absolute r value was 0.823 for
LNC and 0.684 for LPC. Model performance improvements were notable
(Fig. 10). For LNC prediction, the model achieved an R? 0f 0.947 and an
RRMSE of 9.6 %, whereas for LPC prediction, the R? was 0.827 and the
RRMSE was 10.6 %.

The contributions of the top 10 sensitive wavelet features of the PLSR
model are shown in Fig. 11. For N, the feature importance of 550 nm was
the highest (0.06), representing 6 % of the contribution. For P, the
feature importance of 1030 nm was the highest (0.08), representing 8 %
of the contribution.

3.5. Discrimination model validation

To illustrate how the hydrangea leaves were classified into different
nutrient states, confusion matrices were created using the PNN model.
The N and P levels were categorised into three classes, i.e., deficiency,
medium, and surplus, based on the measured LNC, LPC, biomass, and
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Fig. 9. CNN training loss curves.
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plant growth state. The leaf samples were marked as deficient (No),
medium (N;-N3), or surplus (N3) for the N level and as deficient (Py),
medium (P;-P3), or surplus (P3) for the P level.

Table 2 summarises the confusion matrices, overall accuracy (OA),
and kappa values for different nutrient states. All categories had pre-
diction accuracies higher than 95 % in all classes. The N classification of
the model achieved higher OA and kappa values than the P classifica-
tion, with OA of 99.8 % and 99.4 %, respectively, and kappa values of
0.997 and 0.989, respectively. N deficiency had the highest prediction
accuracy at 100 %, while the performance of the model in predicting
excessive N had the lowest prediction accuracy at 97.8 %. The results
confirmed that with the addition of N, the N status was more difficult to
recognise via spectral reflectance.

There were some differences in the classification of P. The highest
percentage of correctly classified cases was observed under P surplus
(100 %). This may be due to excessive P causing stress, as indicated by
the lowest biomass and highest spectral reflectance under the different P
treatments. In the other categories, the accuracy for the medium P level
was lower than that for P deficiency. This could be explained by the fact
that the medium P level is closer to the high and low levels, making it
more difficult to distinguish than the other two classes.

4. Discussion

Studies have shown that spectral reflectance can indicate plant
nutrient conditions. The visible (VIS, 400-760 nm) and near-infrared
(NIR, 760-900 nm) spectra are often used to distinguish between N
and P. As reported by Zhang et al. (2023), our study confirmed that N
and P deficiencies increased reflectance in the VIS and decreased
reflectance in the NIR. Other studies have reported that the red-edge
region is important for distinguishing N and P levels (Mutanga and
Kumar, 2007; Cho and Skidmore, 2006). We also found that the red-edge
position for N was around 710 nm, which is strongly linked to chloro-
phyll (Abdel-Rahman et al., 2010). For the P level, the red-edge posi-
tions were identified at 713 nm and 728 nm, which matched the findings
reported by Guo et al. (2018). The relationship between the LPC and
red-edge wavelengths was also influenced by chlorophyll. When LPC is
low or absent, the chlorophyll content decreases, and the anthocyanin
content increases, which can cause the leaf surface to become purple (Li
et al., 2016). These findings suggest that changes in red-edge wave-
lengths are associated with the chlorophyll content and nutrient
statuses.

We also compared the results of nutrient content with those of two
spectral transformations: FD and CWT. After FD treatment, correlation
analysis revealed that the wavelengths most strongly correlated with
LNC (599-660 nm) and LPC (653-674 nm) were located primarily in the
red-edge region. The highest correlation for LNC was found at 782 nm
(r= 0.71), whereas 458 nm had a negative correlation with LPC (r=
—0.35). These findings highlight the importance of red and blue regions
for nutrient prediction, with 782 nm being closely associated with the
absorption of chlorophyll a (Osborne et al., 2002) and 458 nm being
close to the chlorophyll b absorption characteristic (Curran, 1989).
Compared to FD, CWT provided even more effective dimensionality
reduction, denoising, and enhanced correlation with N and P levels
(Cheng et al., 2012), achieving correlations of r= -0.90 and r= -0.87,
respectively. These results suggest that CWT can effectively extract more
reliable spectral features, making it an ideal preprocessing technique for
hyperspectral data analysis.

While comparing the PLSR, RF, and CNN algorithms for estimating
LNC and LPC, we found that RF was the least effective, whereas PLSR
showed performance similar to that of CNN. After using CWT, the PLSR
models outperformed the other algorithms, achieving improved pre-
diction accuracy while reducing the number of input variables. This
matched the findings of Yang et al. (2021), who emphasised the
robustness and stability of PLSR. For LNC and LPC estimation, the VIS
and NIR regions were identified as important, with sensitive bands at
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Table 2
Confusion matrices, OA, and kappa coefficients of the PNN model under different nutrient statuses.
Model (PNN) Predicted Class Precision Recall OA Kappa
Deficiency Medium Surplus
Actual Deficiency 804 0 0 100 % 100 % 99.8 % 0.997
Class Medium 0 630 0 99.5 % 100 %
N) Surplus 0 3 132 100 % 97.8 %
Actual Deficiency 801 3 0 99.3 % 99.6 % 99.4 % 0.989
Class Medium 6 687 0 99.6 % 99.1 %
P) Surplus 0 0 75 100 % 100 %

about 550 nm at scale [5] for LNC and 1030 nm at scale [6] for LPC,
confirming the relevance of these wavelengths for plant nutrient pre-
diction (Zhang et al., 2023).

Overall, the prediction of LNC was better than that of LPC in all
models, probably because of a weaker correlation of spectral reflectance
with LPC within the 400-1000 nm range. This indicates that detecting P
deficiencies is challenging, as they rarely show visible symptoms like
chlorosis at early stages. In contrast, N deficiencies are typically easier to
identify (Pinit et al., 2022). This finding aligns with the understanding
that P shortage not only reduces LNC but also hinders ATP synthase
activity, disrupting the electron transport chain and leading to transient
changes in chlorophyll a fluorescence (Carstensen et al., 2018). Our
discrimination model, which uses PNN algorithms, confirmed these
observations, showing a slightly lower overall accuracy in identifying P
than in identifying N.

By combining hyperspectral spectroscopy with CWT, we developed a
reliable, efficient method for estimating plant nutrients, particularly for
hydrangea cultivation. Compared to other studies, our study more

effectively addressed the challenge of weak spectral correlations with
LPC. The models developed in this study, particularly the CWT-PLSR
approach, can be used in future precision agriculture applications, of-
fering improved nutrient management and potentially extending to
other crops.

5. Conclusion

In this study, we successfully used hyperspectral spectroscopy to
characterise N and P in hydrangea. By applying spectral preprocessing
techniques such as FD and CWT, we extracted more detailed spectral
information, improving the ability to characterise plant nutrition. By
comparing different preprocessing methods, we found that CWT out-
performs FD in terms of spectral data quality and prediction accuracy.
The PLSR model, coupled with CWT, provided the best predictions for
LNC and LPC, achieving high accuracy (R?= 0.947, RRMSE= 9.6 % for
LNC; R2= 0.827, RRMSE= 10.6 % for LPC). This method significantly
decreased the number of input variables without decreasing prediction
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performance. Additionally, the classification model (PNN) achieved
over 95 % accuracy in distinguishing between N and P nutrient statuses.
The findings of this study can provide a robust foundation for the use of
hyperspectral spectroscopy in precision nutrient management for the
cultivation of hydrangea and other crops. The CWT-PLSR model devel-
oped in this study offers a promising approach to improve crop man-
agement through more efficient and accurate nutrient estimation; future
studies should focus on refining these models for field conditions.
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